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Presentation Outline

1. Problem statement

2. Graph-based representation of configurations

3. Performance modelling – direct and reverse

4. Design workflow

5. Web service for fat-tree and torus network design

6. Web service for ANSYS Fluent performance model

7. CAD tool for computer cluster design

8. Analysis of results

9. Future work

Hi, today we will review how automated design of computer clusters can be 
accomplished by querying web services – separate software modules providing 

required functionality, such as calculating performance, designing cluster 

subsystems (interconnection network, for example), and so on.
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Problem Statement
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The optimization problem is formulated as follows: find a tuple S (that precisely 
describes supercomputer parameters) which minimizes the objective function 

“total cost of ownership divided by performance of supercomputer”.

One of the main challenges is representing supercomputer parameters, because 

a vector of fixed length (such as vector S above) is not suitable in the general 
case. This is especially evident when certain hardware items are not compatible, 

which means that corresponding combinations of parameters in vector S are 

forbidden.

We solve this problem by representing supercomputer configurations with a 

graph, and calculating parameters by traversing this graph (see next slide).
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Graph-Based Representation of 
Configurations

Bozhko and Tolparov proposed (see [1] below) to use undirected cyclic 
multipartite graphs to represent allowed combinations of elements in various 

technical devices, with edges representing compatibility between elements. 

Complex technical systems can be described using this approach, preserving 

precise compatibility information.

However, no provisions exist to calculate characteristics of technical systems. 

Therefore, we further developed this approach by assigning edges and vertices 

with expressions that must be evaluated. Also, we shifted from undirected graphs 

with cycles to directed acyclic graphs, as this provides better visual clues 

regarding traversing of the graph.

Here we represent a simple configuration of a cluster compute node using our 

approach with directed acyclic graphs. The server can have either one or two 

CPUs, there are three possible CPU models (AMD 6272, 6274 and 6276), and if 
the second CPU is installed, it must be identical to the first one.

CPUs are equipped with memory separately, i.e., the first CPU can have either 

16, 32 or 48 GBytes of memory attached to it, and so can the second CPU (if it is 
installed). Obtaining a valid configuration requires traversing a path in the graph, 

from “Start” to “End”. Let us prescribe (arbitrary) values and arithmetic 

expressions to graph vertices (see next slide).

Footnote: 1. A.N. Bozhko and A.Ch. Tolparov. Structural synthesis on elements 
of limited compatibility (in Russian). Science and Education, 5, 2004.
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Graph-Based Representation of 
Configurations

cost=1400

dimm_count=12

cost=+650

cost=+780

cost=+950

dimm_count=-2

dimm_count=-4

dimm_count=-6

cost=+650

cost=+780

cost=+950

cost=2700

dimm_count=4

dimm_count=-2

dimm_count=-4

dimm_count=-6

Here, we prescribe the initial cost of the server (the bare motherboard, before 
any components are installed) to be 1400 monetary units. The number of DIMM 

memory slots is set to 12. Adding CPUs increases the “cost” characteristic as per 

evaluated expressions (for example, “cost=+650”). Correspondingly, adding 

memory decreases the number of available DIMM slots (for example, 

“dimm_count=-4”).

As a result, traversing a path in the graph not only ensures compatibility between 

all components, but also simultaneously computes all necessary technical and 

economic characteristics. In the shown case, a particular path is highlighted in 

blue, and corresponding characteristics for this path are shown on the right: 
“cost=2700; dimm_count=4”.



6

Performance Modeling

� Direct mode: 
� {cpu_arch, cpu_frequency, …, cores} → performance

� Reverse mode:
� {cpu_arch, cpu_frequency, …, performance} → cores

cores

performance

max

There are two performance modelling modes. Generally speaking, in the direct 
mode (the best known), we supply supercomputer parameters and the 

number of cores, and receive performance.

In the lesser known reverse mode, we supply supercomputer parameters along 

with desired performance, and receive the number of cores. We solve the 
inverse modelling task by calling the direct performance model iteratively 

several times. That’s how it works:

1. On the first stage, we query direct performance model, each time with the 
number of cores twice bigger than in the previous step (see gray dots on the 

curve), until performance becomes bigger than requested by the user, or the 

maximum reasonable number of cores is reached.

2. On the second stage, we search for the precise number of cores using the 

bisection method (see blue dots on the curve).

As a result, when a performance is specified, the corresponding number of cores 
can be found quite easily and in a few steps.
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Design Workflow

Let us now review the design workflow – the sequence of steps that must be 
taken to design a cluster supercomputer. As a diagram is rather big, we will 

review it in the two slides below.
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Design Workflow

1. Informal requirements specifications are turned into formal ones by a human engineer. This 

results in budgetary constraints (capital and operating expenditures) as well as performance 

constraints (i.e., performance with “Software_1” must be bigger than “Perf_1”, etc.)

2. Requirements for further expansion, as well as reliability requirements (useful for future 

exascale systems) can also be specified at this stage.

3. Compute nodes of a cluster are essentially servers, which can have multiple configurations 

(differing by the number of CPUs used, their model, the presence of hardware accelerators 

such as GPU, Intel MIC or FPGA, etc.) We iterate through all possible configurations of 

compute nodes. Configurations are represented with a graph, as outlined above, and by 

traversing the graph we obtain hundreds of configurations even for a single server model. (At 

this stage we can also exclude a particular configuration from further procedures by using 

heuristics)

4. For each configuration, we try different network designs as specified by the user. The choice 

of network heavily influences performance of the future system, and also has impact on 

supercomputer cost, power consumption and other vital characteristics.

5. The parameters of compute node, as well as the choice of network, are then fed into the 

inverse performance model, which gives us the number of compute nodes required to fulfill

user-specified performance requirements. Armed with the number of nodes in a cluster, we 

can now update our budget (capital and operating expenditures) and check if we still fit within 

global constraints specified in the beginning. Power consumption of the machine and its size 

of equipment, measured in rack-mount units, is also updated at this stage.

(Switch to the next slide to proceed)
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Design Workflow

6. As we now know the power consumption of our machine, we can design a UPS system for it. 
Then, we update budget and other characteristics.

7. Then comes the stage of equipment placement into racks. We can fill racks as densely as 
possible, or only put a certain amount of equipment into racks so as not to exceed floor load. 
This is feasible, as weight of each equipment item is known. The placement problem 
generally translates to the famous “knapsack problem”, but a number of heuristics can be 
used to make this stage easier.

8. We know the number of racks, so we put racks on the floor, leaving enough space around them 
for maintenance purposes as specified by the vendor. This gives us the required floor space 
in square meters, which allows to estimate costs of renting this space or building a new 
machine room.

9. Network and power cables, as well as cooling pipes, can all be traced throughout the machine 
room by similar algorithms.

10. Final design contains necessary drawings and the bill of materials. It’s now time for a final 
check if we are still within global constraints. If yes, we add this design to the pool of viable 
designs, calculating for it the value of a certain objective function (“Total cost of ownership / 
Performance” appears to be a good choice)

11. We turn to the next configuration of the compute node, or, if all are exhausted, to the next 
model of a compute node. The design process then repeats again and again.

This may seem complex, but in fact, after all specific stages have been written down, it is just the 
matter of proper automation. And remember we can use modules to automate separate 
stages. A module for fat-tree and torus network design, as well as a direct and inverse 
performance model for ANSYS Fluent software, have already been created. They are 
accessible through a web interface and can also be used as helpful standalone tools.

Other modules (equipment placement into racks and rack placement on the floor, cable tracing, 
drawing creation and others) can be created in the future.
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Web Service for Fat-Tree and Torus 
Network Design

The web service for fat-tree network design takes a number of parameters (such 
as the number of nodes that need to be interconnected) and constraints (such as 

the overall budget), and prints the results in several formats.

Internally, the web service tries all possible configurations of edge and core 

layers, using its internal database of switches, and returns the best configuration 
– the optimal one, according to a certain objective function. Currently, the built-in 

objective function is network cost.
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Web Service for Fat-Tree and Torus 
Network Design

Here is the output in human-readable format. The optimal configuration is printed, 
including the number of switches and cables.

Most importantly, vital characteristics of the network – cost, size of equipment in 

rack-mount units, etc. – are all computed automatically and printed. This allows 

to call this web service from a CAD tool, and utilize its output in design 
procedures.
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Web Service for Fat-Tree and Torus 
Network Design

nodes=600

nodes_future_max=600

max_network_blocking_factor=1.0

max_network_cost=0

max_network_power=0

max_network_weight=0

max_network_equipment_size=0

network_prefer_expandable=True

network_topology=fat-tree

network_edge_switch_count=34

network_edge_ports_to_nodes=18

network_edge_ports_to_core_level=18

network_links_run_in_bundles=6

network_core_switch_count=3

network_edge_uniform_distribution=False

network_link_count=1212

network_spare_ports=12

network_expandable_to=612

network_edge_switch_model=Mellanox Grid Director 4036 (36 ports)

network_core_switch_model=Mellanox IS5200 (216 ports)

network_cost=1220840

network_power=11386

network_weight=699.8

network_equipment_size=64

network_core_level_utilization=94

network_blocking_factor=1.0

� Name-value pairs

For automated invocations, the machine-readable output is the most convenient.
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Web Service for Fat-Tree and Torus 
Network Design

Linear fit for a quick 
“engineering evaluation”

We called this web service iteratively to calculate network cost for up to N=3,888 
compute nodes. The results are on the graph.

Additionally, to a certain level of precision, a linear fit for network cost can be 

used as a quick “engineering evaluation”, as indicated by a green straight line.
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Web Service for ANSYS Fluent 
Performance Model

The web service that implements the ANSYS Fluent performance model has a 
similar interface.

For direct performance modelling you need to specify the CPU frequency and the 

number of cores in the cluster, and the web service will return the performance 

evaluation. For inverse modelling, instead of the number of cores, supply the 
required performance rating, in tasks per day, and the number of cores will be 

determined automatically.

Another tuneable parameter is the network technology; and not surprisingly, 
InfiniBand gives better results than 10GigabitEthernet.

Currently, only one ANSYS Fluent benchmark was implemented, because 

sufficient amounts of benchmarking data were available for it.
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Web Service for ANSYS Fluent 
Performance Model

Here is the sample output in human-readable format. The user supplied 2048 
cores, and the resulting performance is 1518 tasks per day. Each 57 seconds a 

new task will be completed (“time to solution”).

This result is for InfiniBand network. For reference purposes, maximal 

performance data is also outputted: the maximal rating is 1944 tasks per day, 
observed at 3072 cores. For comparison, the 10GigabitEthernet network 

technology only scales up to 384 cores.
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Web Service for UPS Design

ups_backup_time=2940

ups_cost=35000

ups_cost_per_kw=2333,3

ups_heat=900

ups_model=Liebert APM (up to 45kW)

ups_power_rating=15000

ups_size_racks=1

ups_weight=417

Design 
parameters

Result

Along the similar lines works the UPS design web service.
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CAD Tool for Computer Cluster 
Design

The CAD tool for computer cluster design was implemented. It utilizes web 
services described above.

The demo database of compute nodes contains a Hewlett-Packard’s “HP BL465c 

G7” server, which has 264 different configurations. Note that we can significantly 

decrease the design space by applying heuristics.

The “Performance”, “Network” and “UPS” tabs allow to load, correspondingly, 

performance, network and UPS design web services that will be used during the 

design process.

During the design phase, various technical and economic characteristics are 

evaluated (such as capital costs of computing hardware). Designs are then 

sorted according to the objective function (which is “Capital costs/Performance”), 

and best designs are printed.

For example, we asked the CAD system to design a cluster that would be able to 

achieve performance of 1600 tasks per day on ANSYS Fluent “truck_111m”

benchmark. Out of 264 designs, the tool identified 4 designs of different cost. The 
best design had the following characteristics:

Compute node model: Hewlett-Packard BL465c G7

Cost: 1,374,300 US dollars

CPU model: AMD Opteron 6220

CPUs per compute node: 2
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Analysis of Results

Optimal for 24 and 240 tasks per day

12 3

As we have 264 configurations of compute nodes based on HP BL465c G7 
server, we plotted them on this graph. Every configuration has its own cost, 

which is represented on a vertical axis. As can be seen, configurations vastly 

differ in their cost, ranging from 3,000 to 13,000 US dollars.

When we run the design process with a goal of 24 and 240 ANSYS Fluent tasks 
per day, the following configurations (marked with 1, 2 and 3) are optimal. It is not 

the cheapest nor the most expensive configuration that is optimal. This strongly 

suggests that intuition alone is not enough to arrive to optimal designs.

We repeated this analysis with the goal of 1600 tasks per day, and the results are 

drastically different (see the next slide).
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Analysis of Results

Optimal for 1600 tasks per day

1

2

3

For 1600 tasks per day, the previous configurations were not optimal anymore, 
and new three leaders (marked with 1, 2 and 3) are now the best.

Interestingly, the best configurations of compute nodes all have very different 

costs. Therefore, one cannot infer whether the compute node configuration is 

good or not by only judging by its cost. This is yet another reason for design 
automation.
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Analysis of Results

Here is another representation of 264 configurations of HP BL465c G7 server, 
this time using a histogram. A skew can be seen, which indicates that there exist 

more “costly” configurations than there are “inexpensive” ones; however, as was 

seen before, the optimal configurations can have any price which cannot be 

predicted beforehand.
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Analysis of Results

We also selected a pool of about 150 configurations that all yield the performance 
of 240 tasks per day. However, they differ in capital costs of hardware that must 

be procured.

Points on a graph are coloured according to the number of CPUs in a compute 

node (1 or 2) and the network type (“I” for InfiniBand and “E” for 
10GigabitEthernet), see the legend.

The close-up of the region of interest is shown on the next slide.



22

Analysis of Results

As can be seen, for some configurations of compute nodes, a supercomputer can 
be built for less than 100,000 US dollars, but other configurations require up to 

400,000 dollars investment in hardware.

Certainly, we need to find the best configurations. The performance is on a 

horizontal axis, and capital costs are on the vertical axis. Therefore, if the 
objective function is “Capital cost / Performance”, then the best configuration is 

easily determined, because the line passing through that point would have the 

lowest slope. Here, the best system has 2 CPUs and InfiniBand network. The 

worst system has one CPU and, somewhat surprisingly, also InfiniBand network.



23

Conclusions

� The framework to automatically design cluster 
supercomputers is now available

� The tools are free, open-source and extensible

� Your company’s hardware can be easily added to 
the tools’ databases

� Invaluable for any pre-sales & technical teams, as 
it:
� designs computer clusters to customer’s requirements

� works fast and automatically

� filters out inferior solutions, highlights the best one

More info and updates will be posted at http://ClusterDesign.org

Thank you for your attention!


